Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases
نویسندگان
چکیده
Polyadenylation of nascent RNA by poly(A) polymerase (PAP) is important for 3' end maturation of almost all eukaryotic mRNAs. Most mammalian genes harbor multiple polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms with distinct functions. How poly(A) polymerases may regulate PAS usage and hence gene expression is poorly understood. Here, we show that the nuclear canonical (PAPα and PAPγ) and non-canonical (Star-PAP) PAPs play diverse roles in PAS selection and gene expression. Deficiencies in the PAPs resulted in perturbations of gene expression, with Star-PAP impacting lowly expressed mRNAs and long-noncoding RNAs to the greatest extent. Importantly, different PASs of a gene are distinctly regulated by different PAPs, leading to widespread relative expression changes of APA isoforms. The location and surrounding sequence motifs of a PAS appear to differentiate its regulation by the PAPs. We show Star-PAP-specific PAS usage regulates the expression of the eukaryotic translation initiation factor EIF4A1, the tumor suppressor gene PTEN and the long non-coding RNA NEAT1. The Star-PAP-mediated APA of PTEN is essential for DNA damage-induced increase of PTEN protein levels. Together, our results reveal a PAS-guided and PAP-mediated paradigm for gene expression in response to cellular signaling cues.
منابع مشابه
A large-scale analysis of mRNA polyadenylation of human and mouse genes
mRNA polyadenylation is a critical cellular process in eukaryotes. It involves 3' end cleavage of nascent mRNAs and addition of the poly(A) tail, which plays important roles in many aspects of the cellular metabolism of mRNA. The process is controlled by various cis-acting elements surrounding the cleavage site, and their binding factors. In this study, we surveyed genome regions containing cle...
متن کاملThe cytoplasmic poly(A) polymerases GLD-2 and GLD-4 promote general gene expression via distinct mechanisms
Post-transcriptional gene regulation mechanisms decide on cellular mRNA activities. Essential gatekeepers of post-transcriptional mRNA regulation are broadly conserved mRNA-modifying enzymes, such as cytoplasmic poly(A) polymerases (cytoPAPs). Although these non-canonical nucleotidyltransferases efficiently elongate mRNA poly(A) tails in artificial tethering assays, we still know little about t...
متن کاملPost-Transcriptional Regulation by Poly(ADP-ribosyl)ation of the RNA-Binding Proteins
Gene expression is intricately regulated at the post-transcriptional level by RNA-binding proteins (RBPs) via their interactions with pre-messenger RNA (pre-mRNA) and mRNA during development. However, very little is known about the mechanism regulating RBP activities in RNA metabolism. During the past few years, a large body of evidence has suggested that many RBPs, such as heterogeneous nuclea...
متن کاملUnique features of nuclear mRNA poly(A) signals and alternative polyadenylation in Chlamydomonas reinhardtii.
To understand nuclear mRNA polyadenylation mechanisms in the model alga Chlamydomonas reinhardtii, we generated a data set of 16,952 in silico-verified poly(A) sites from EST sequencing traces based on Chlamydomonas Genome Assembly v.3.1. Analysis of this data set revealed a unique and complex polyadenylation signal profile that is setting Chlamydomonas apart from other organisms. In contrast t...
متن کاملRNA Regulatory Elements and Polyadenylation in Plants
Alternative poly(A) site choice (also known as alternative polyadenylation, or APA) has the potential to affect gene expression in qualitative and quantitative ways. APA may affect as many as 82% of all expressed genes in a plant. The consequences of APA include the generation of transcripts with differing 3'-UTRs (and thus differing regulatory potential) and of transcripts with differing prote...
متن کامل